metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-Butyl-1-methyl-1*H*-imidazol-3-ium bis(1,2-dicyanoethene-1,2-dithiolato- $\kappa^2 S, S'$)nickel(III)

Shan-Shan Yu

School of Biochemical and Environmental Engineering, Nanjing Xiaozhuang College, Nanjing, 210017, People's Republic of China Correspondence e-mail: yushanshan_2005@163.com

Received 26 October 2011; accepted 7 November 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; R factor = 0.050; wR factor = 0.099; data-to-parameter ratio = 15.5.

In the title compound, $(C_8H_{15}N_2)[Ni(C_4N_2S_2)_2]$, the Ni^{III} atom is coordinated by four S atoms of two maleonitriledithiolate ligands and exhibits a distorted square-planar geometry. In the crystal, the cations and anions are connected alternately by weak intermolecular $C-H \cdots N$ hydrogen bonds, forming a zigzag chain along [201].

Related literature

For applications of bis(1,2-dithiolene) complexes of transition metals, see: Nishijo *et al.* (2000); Ni *et al.* (2005). For related structures, see: Ni *et al.* (2004); Ren *et al.* (2004, 2008); Duan *et al.* (2010).

Experimental

Crystal data (C₈H₁₅N₂)[Ni(C₄N₂S₂)₂]

 $M_r = 478.31$

Monoclinic, $P2_1/c$	
a = 10.650 (2) Å	
b = 7.3924 (13) Å	
c = 26.691 (5) Å	
$\beta = 93.463 \ (5)^{\circ}$	
V = 2097.5 (7) Å ³	

Data collection

Bruker SMART CCD area-detector	19183 measured reflections
diffractometer	3824 independent reflections
Absorption correction: multi-scan	3246 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2000)	$R_{\rm int} = 0.044$
$T_{\min} = 0.733, \ T_{\max} = 0.818$	

Z = 4

Mo $K\alpha$ radiation

 $0.40 \times 0.20 \times 0.15 \text{ mm}$

 $\mu = 1.34 \text{ mm}^{-1}$

T = 298 K

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.050 & 247 \text{ parameters} \\ wR(F^2) &= 0.099 & H\text{-atom parameters constrained} \\ S &= 1.16 & \Delta\rho_{\max} &= 0.35 \text{ e } \text{\AA}^{-3} \\ 3824 \text{ reflections} & \Delta\rho_{\min} &= -0.34 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} C13-H13\cdots N4^{i}\\ C15-H15B\cdots N2^{ii} \end{array}$	0.93 0.96	2.57 2.58	3.446 (5) 3.443 (5)	158 149
	1	. 3 (**)		

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) -x, -y + 2, -z + 1.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors thank Nanjing Xiaozhuang College of Jiangsu Province, China, for financial support (grant No. 2010KYQN28).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2799).

References

- Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Duan, H. B., Ren, X. M. & Meng, Q. J. (2010). Coord. Chem. Rev. 254, 1509– 1522.
- Ni, C. L., Dang, D. B., Song, Y., Song, G., Li, Y. Z., Ni, Z. P., Tian, Z. F., Wen, L. L. & Meng, Q. J. (2004). *Chem. Phys. Lett.* **396**, 353–358.
- Ni, Z. P., Ren, X. M., Ma, J., Xie, J. L., Ni, C. L., Chen, Z. D. & Meng, Q. J. (2005). J. Am. Chem. Soc. 127, 14330–14338.
- Nishijo, J., Ogura, E., Yamaura, J., Miyazaki, A., Enoki, T., Takano, T., Kuwatani, Y. & Lyoda, M. (2000). *Solid State Commun.* **116**, 661–664.
- Ren, X. M., Okudera, H., Kremer, R. K., Song, Y., He, C., Meng, Q. J. & Wu, P. H. (2004). *Inorg. Chem.* **43**, 2569–2576.
- Ren, X. M., Sui, Y. X., Liu, G. X. & Xie, J. L. (2008). J. Phys. Chem. A. 112, 8009–8014.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2011). E67, m1726 [doi:10.1107/S1600536811046824]

3-Butyl-1-methyl-1*H*-imidazol-3-ium bis(1,2-dicyanoethene-1,2-dithiolato-*k*²*S*,*S*')nickel(III)

S.-S. Yu

Comment

Bis(1,2-dithiolene) complexes of transition metals have been widely studied due to their novel properties and applications in the areas of near-infrared (near-IR) dyes, conducting, magnetic and nonlinear optical materials (Nishijo *et al.*, 2000; Ni *et al.*, 2005). The behavior of the packing structure for bis(1,2-dithiolene) complexes monoanions was strongly affected by the type of counterions. Herein we introduce a flexible organic cation into dithiolene monoanions system and report the crystal structure of the title compound (I).

The molecular structure of (I) is illustrated in Fig. 1. The asymmetric unit comprises one $[Ni(mnt)_2]^-$ monoanion and one 1-methyl-3-butyl-imidazolinium cation. The Ni ion in the $[Ni(mnt)_2]^-$ anion is coordinated by four S atoms of two mnt²⁻ ligands, and exhibits square-planar coordination geometry, and their molecular planes defined by four coordination S atom are approximately parallel to each other. The bond lengths and angles of anions are in good agreement with the various $[Ni(mnt)_2]^-$ compounds (Ni *et al.*, 2004; Ren *et al.*, 2004, 2008; Duan *et al.*, 2010). The cation adopts a bent conformation, its hydrocarbon chain slightly disrupted close to the imidazole ring with an almost completely *trans*-planar conformation.

Experimental

Disodium maleonitriledithiolate (1.5 mmol) and nickel chloride hexahydrate (0.8 mmol) were mixed under stirring in water (20 mL) at room temperature. Subsequently, a solution of 1-methyl-3-butyl-imidazolinium bromide (1.5 mmol) in water (10 mL) was added to the mixture, and the red precipitate that was immediately formed was filtered off, and washed with water. Then, a methanol solution of I_2 (0.8 mmol) was slowly added to a red precipitate, after stirred for 20 min, the mixture was allowed standing overnight. The microcryatalline formed and the crude product was recrystallized in acetone to give black block crystals.

Refinement

H atoms were placed in geometrically idealized positions with 0.97 Å for methylene H atoms and 0.96 Å for methyl H atoms, respectively, and were refined as riding atoms with $U_{iso}(H) = 1.2U_{eq}(C)$ for methylene H atoms and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms.

Figures

Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level.

3-Butyl-1-methyl-1*H*-imidazol-3-ium bis(1,2-dicyanoethene-1,2-dithiolato- $\kappa^2 S$,S')nickel(III)

F(000) = 980.0

 $\theta = 2.6 - 21.2^{\circ}$

 $\mu = 1.34 \text{ mm}^{-1}$

T = 298 K

Block, black

 $0.40 \times 0.20 \times 0.15 \text{ mm}$

 $D_{\rm x} = 1.515 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71070$ Å

Cell parameters from 778 reflections

Crystal data

 $(C_8H_{15}N_2)[Ni(C_4N_2S_2)_2]$ $M_r = 478.31$ Monoclinic, $P2_1/c$ Hall symbol: -p 2Ybc a = 10.650 (2) Å b = 7.3924 (13) Å c = 26.691 (5) Å $\beta = 93.463$ (5)° V = 2097.5 (7) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer	3824 independent reflections
Radiation source: fine-focus sealed tube	3246 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.044$
ϕ and ω scans	$\theta_{\text{max}} = 25.4^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2000)	$h = -12 \rightarrow 12$
$T_{\min} = 0.733, T_{\max} = 0.818$	$k = -8 \rightarrow 7$
19183 measured reflections	$l = -32 \rightarrow 30$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.050$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.099$	H-atom parameters constrained
<i>S</i> = 1.16	$w = 1/[\sigma^2(F_o^2) + (0.0319P)^2 + 1.4061P]$ where $P = (F_o^2 + 2F_c^2)/3$
3824 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
247 parameters	$\Delta \rho_{max} = 0.35 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.34 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Ni1	0.09847 (4)	0.70716 (6)	0.503296 (15)	0.04030 (15)
S1	0.13066 (8)	0.76184 (13)	0.42646 (3)	0.0483 (2)
S2	-0.09351 (8)	0.79241 (12)	0.49400 (3)	0.0456 (2)
S3	0.28875 (9)	0.61212 (14)	0.51160 (3)	0.0507 (3)
S4	0.06746 (9)	0.65718 (13)	0.58064 (3)	0.0486 (2)
N1	-0.0210 (4)	0.9489 (6)	0.31048 (14)	0.0832 (12)
N2	-0.3277 (3)	0.9738 (5)	0.40060 (15)	0.0789 (11)
N3	0.5208 (4)	0.4175 (6)	0.60350 (16)	0.0882 (13)
N4	0.2194 (4)	0.4677 (6)	0.69608 (14)	0.0956 (14)
N5	0.6606 (3)	0.8606 (4)	0.59871 (10)	0.0476 (7)
N6	0.7729 (3)	0.7519 (4)	0.66100 (11)	0.0510 (8)
C1	-0.2310 (4)	0.9224 (5)	0.41389 (15)	0.0532 (10)
C2	-0.1106 (3)	0.8554 (4)	0.43214 (13)	0.0425 (8)
C3	-0.0107 (3)	0.8444 (4)	0.40249 (13)	0.0432 (8)
C4	-0.0187 (3)	0.9029 (6)	0.35110 (15)	0.0550 (10)
C5	0.4244 (4)	0.4750 (6)	0.59122 (15)	0.0596 (11)
C6	0.3061 (3)	0.5491 (5)	0.57365 (13)	0.0477 (9)
C7	0.2078 (3)	0.5671 (5)	0.60397 (13)	0.0478 (9)
C8	0.2156 (4)	0.5117 (6)	0.65538 (16)	0.0612 (11)
C9	0.5952 (6)	0.3532 (9)	0.7533 (3)	0.157 (3)
H9A	0.5596	0.2909	0.7243	0.236*
H9B	0.5289	0.3953	0.7732	0.236*
Н9С	0.6487	0.2722	0.7729	0.236*
C10	0.6682 (5)	0.5058 (7)	0.7376 (2)	0.0941 (17)
H10A	0.7005	0.5701	0.7673	0.113*
H10B	0.6124	0.5875	0.7185	0.113*
C11	0.7771 (4)	0.4598 (6)	0.70632 (16)	0.0681 (12)
H11A	0.8329	0.3767	0.7249	0.082*
H11B	0.7455	0.3992	0.6759	0.082*
C12	0.8509 (4)	0.6250 (6)	0.69236 (15)	0.0665 (12)
H12A	0.8823	0.6863	0.7227	0.080*
H12B	0.9226	0.5876	0.6742	0.080*
C13	0.7196 (4)	0.9081 (6)	0.67674 (14)	0.0592 (10)
H13	0.7301	0.9583	0.7087	0.071*
C14	0.6497 (4)	0.9761 (5)	0.63792 (14)	0.0573 (10)
H14	0.6027	1.0821	0.6377	0.069*
C15	0.6000 (4)	0.8833 (6)	0.54840 (13)	0.0624 (11)
H15A	0.6348	0.9871	0.5326	0.094*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H15B	0.5112	0.9002	0.5	5509	0.094*	
H15C	0.6144	0.7774	0.5	5287	0.094*	
C16	0.7359 (3)	0.7259 (5)	0.0	61352 (13)	0.0493 (9)	
H16	0.7588	0.6291	0.5	5937	0.059*	
Atomic displace	ement parameters	$(Å^2)$				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0425 (3)	0.0390 (3)	0.0395 (3)	-0.0044 (2)	0.0042 (2)	-0.00279 (19)
S 1	0.0432 (5)	0.0599 (6)	0.0422 (5)	0.0011 (4)	0.0067 (4)	0.0003 (4)
S2	0.0430 (5)	0.0454 (5)	0.0490 (5)	-0.0041 (4)	0.0084 (4)	-0.0038 (4)
S3	0.0461 (5)	0.0585 (6)	0.0476 (5)	-0.0001 (5)	0.0036 (4)	0.0011 (5)
S4	0.0529 (6)	0.0490 (6)	0.0446 (5)	-0.0023 (4)	0.0076 (4)	0.0001 (4)
N1	0.076 (3)	0.118 (3)	0.054 (2)	-0.009(2)	-0.005 (2)	0.012 (2)
N2	0.052 (2)	0.081 (3)	0.102 (3)	0.006 (2)	-0.004 (2)	-0.003 (2)
N3	0.056 (2)	0.100 (3)	0.107 (3)	-0.001 (2)	-0.013 (2)	0.027 (3)
N4	0.121 (4)	0.112 (4)	0.053 (2)	-0.006 (3)	-0.001 (2)	0.019 (2)
N5	0.0408 (17)	0.058 (2)	0.0440 (17)	-0.0021 (15	5) 0.0029 (14)	0.0024 (15)
N6	0.0439 (18)	0.064 (2)	0.0444 (18)	-0.0002 (16	6) -0.0010 (14)	0.0042 (16)
C1	0.051 (2)	0.047 (2)	0.061 (2)	-0.0069 (19	0.002 (2)	-0.0057 (19)
C2	0.042 (2)	0.0330 (18)	0.052 (2)	-0.0043 (15	5) -0.0030 (17)	-0.0037 (16)
C3	0.044 (2)	0.040 (2)	0.045 (2)	-0.0047 (16	6) -0.0017 (16)	-0.0040 (16)
C4	0.048 (2)	0.065 (3)	0.051 (2)	-0.0016 (19	9) -0.0032 (19)	-0.003 (2)
C5	0.054 (3)	0.060 (3)	0.064 (3)	-0.007 (2)	-0.002 (2)	0.011 (2)
C6	0.051 (2)	0.044 (2)	0.048 (2)	-0.0071 (17	7) -0.0043 (18)	0.0020 (17)
C7	0.056 (2)	0.045 (2)	0.041 (2)	-0.0131 (17	7) -0.0027 (18)	0.0002 (17)
C8	0.069 (3)	0.061 (3)	0.052 (3)	-0.007 (2)	-0.003 (2)	0.004 (2)
C9	0.149 (6)	0.121 (6)	0.211 (8)	0.013 (5)	0.089 (6)	0.062 (5)
C10	0.081 (3)	0.093 (4)	0.112 (4)	0.006 (3)	0.033 (3)	0.029 (3)
C11	0.070 (3)	0.072 (3)	0.062 (3)	0.016 (2)	0.003 (2)	0.012 (2)
C12	0.048 (2)	0.091 (3)	0.060(2)	0.009(2)	-0.001 (2)	0.019 (2)
C13	0.066 (3)	0.065 (3)	0.047 (2)	-0.003 (2)	0.004 (2)	-0.009 (2)
C14	0.060 (3)	0.055 (2)	0.057 (2)	0.007 (2)	0.007 (2)	0.001 (2)
C15	0.050 (2)	0.086 (3)	0.050(2)	0.000(2)	-0.0053 (19)	0.005 (2)
C16	0.044 (2)	0.057 (2)	0.047 (2)	0.0003 (18)	0.0053 (17)	-0.0027 (18)
Geometric para	meters (Å, °)					

2.1382 (10)	C6—C7	1.368 (5)
2.1395 (10)	С7—С8	1.429 (5)
2.1424 (10)	C9—C10	1.446 (7)
2.1436 (11)	С9—Н9А	0.9600
1.712 (4)	С9—Н9В	0.9600
1.715 (4)	С9—Н9С	0.9600
1.719 (4)	C10-C11	1.509 (6)
1.718 (4)	C10—H10A	0.9700
1.135 (5)	C10—H10B	0.9700
1.134 (5)	C11—C12	1.510 (6)
1.140 (5)	C11—H11A	0.9700
	2.1382 (10) 2.1395 (10) 2.1424 (10) 2.1436 (11) 1.712 (4) 1.715 (4) 1.719 (4) 1.718 (4) 1.135 (5) 1.134 (5) 1.140 (5)	$\begin{array}{llllllllllllllllllllllllllllllllllll$

N4—C8	1.133 (5)	C11—H11B	0.9700
N5—C16	1.324 (4)	C12—H12A	0.9700
N5-C14	1.361 (5)	C12—H12B	0.9700
N5—C15	1.464 (4)	C13—C14	1.337 (5)
N6—C16	1.318 (4)	C13—H13	0.9300
N6—C13	1.364 (5)	C14—H14	0.9300
N6—C12	1.479 (5)	C15—H15A	0.9600
C1—C2	1.433 (5)	C15—H15B	0.9600
C2—C3	1.366 (5)	C15—H15C	0.9600
C3—C4	1.436 (5)	С16—Н16	0.9300
C5—C6	1.428 (5)		
\$1Ni1\$2	92 32 (4)	H9AC9H9C	109.5
S1Ni1S4	178 96 (4)	H9B_C9_H9C	109.5
S2Ni1S4	87 75 (4)	C9-C10-C11	115 5 (5)
S1Ni1S3	87.75 (4) 87.77 (4)	C_{9} C_{10} H_{10A}	108.4
\$1\$5 \$2\$1\$3	177.80(4)	C_{11} C_{10} H_{10A}	108.4
S2	177.89(4)	C_{11} C_{10} H_{10} H_{10}	108.4
54 - 111 - 55	92.30(4)	C11 C10 U10P	100.4
$C_2 = S_2 = N_{11}$	103.73(12) 102.70(12)		108.4
$C_2 = S_2 = N_1^2$	103.70(12) 102.54(12)	$\begin{array}{c} \text{HI0A} \\ \text{-CI0} \\ \text{-HI0B} \\ \text{-CI1} \\ \text{-CI0} \\ \text{-HI0B} \\$	107.5
$C_0 = S_3 = N_1 I$	103.54 (13)		112.5 (4)
C/—S4—INII	103.58 (12)	CI2—CII—HIIA	109.1
C16—N5—C14	108.7 (3)	CIO-CII-HIIA	109.1
C16—N5—C15	125.8 (3)	CI2—CII—HIIB	109.1
C14—N5—C15	125.5 (3)	CIO-CII-HIIB	109.1
C16—N6—C13	108.3 (3)	HIIA—CII—HIIB	107.8
C16—N6—C12	125.2 (3)	N6—C12—C11	111.7 (3)
C13—N6—C12	126.3 (3)	N6—C12—H12A	109.3
N2—C1—C2	178.1 (5)	C11—C12—H12A	109.3
C3—C2—C1	122.4 (3)	N6—C12—H12B	109.3
C3—C2—S2	120.0 (3)	C11—C12—H12B	109.3
C1—C2—S2	117.5 (3)	H12A—C12—H12B	107.9
C2—C3—C4	122.1 (3)	C14—C13—N6	107.6 (3)
C2—C3—S1	120.2 (3)	C14—C13—H13	126.2
C4—C3—S1	117.7 (3)	N6—C13—H13	126.2
N1—C4—C3	177.8 (4)	C13—C14—N5	106.9 (4)
N3—C5—C6	177.3 (5)	C13-C14-H14	126.5
C7—C6—C5	122.3 (3)	N5-C14-H14	126.5
C7—C6—S3	120.1 (3)	N5-C15-H15A	109.5
C5—C6—S3	117.5 (3)	N5-C15-H15B	109.5
C6—C7—C8	122.5 (4)	H15A—C15—H15B	109.5
C6—C7—S4	120.2 (3)	N5-C15-H15C	109.5
C8—C7—S4	117.3 (3)	H15A—C15—H15C	109.5
N4—C8—C7	178.7 (5)	H15B—C15—H15C	109.5
С10—С9—Н9А	109.5	N6—C16—N5	108.5 (3)
С10—С9—Н9В	109.5	N6—C16—H16	125.7
Н9А—С9—Н9В	109.5	N5—C16—H16	125.7
С10—С9—Н9С	109.5		
S3—Ni1—S1—C3	179.03 (12)	C5—C6—C7—S4	-179.9 (3)

supplementary materials

S1—Ni1—S2—C2	-0.41 (12)	S3—C6—C7—S4	-1.4 (4)
S4—Ni1—S2—C2	178.55 (12)	Ni1—S4—C7—C6	1.9 (3)
S1—Ni1—S3—C6	179.74 (13)	Ni1—S4—C7—C8	-177.6 (3)
S4—Ni1—S3—C6	0.78 (13)	C9—C10—C11—C12	-178.6 (5)
S2—Ni1—S4—C7	176.57 (13)	C16—N6—C12—C11	-72.9 (5)
Ni1—S2—C2—C3	-0.7 (3)	C13—N6—C12—C11	102.1 (5)
Ni1—S2—C2—C1	-179.3 (2)	C10-C11-C12-N6	-62.5 (5)
C1—C2—C3—C4	1.3 (5)	C16—N6—C13—C14	0.0 (4)
S2—C2—C3—C4	-177.2 (3)	C12—N6—C13—C14	-175.7 (3)
C1—C2—C3—S1	-179.6 (3)	N6-C13-C14-N5	0.1 (4)
S2—C2—C3—S1	1.8 (4)	C16—N5—C14—C13	-0.2 (4)
Ni1—S1—C3—C2	-1.9 (3)	C15—N5—C14—C13	-179.5 (3)
Ni1—S1—C3—C4	177.2 (3)	C13—N6—C16—N5	-0.1 (4)
Ni1—S3—C6—C7	0.2 (3)	C12—N6—C16—N5	175.6 (3)
Ni1—S3—C6—C5	178.7 (3)	C14—N5—C16—N6	0.2 (4)
C5—C6—C7—C8	-0.5 (6)	C15—N5—C16—N6	179.6 (3)
S3—C6—C7—C8	178.0 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C13—H13…N4 ⁱ	0.93	2.57	3.446 (5)	158
C15—H15B····N2 ⁱⁱ	0.96	2.58	3.443 (5)	149

Symmetry codes: (i) -x+1, y+1/2, -z+3/2; (ii) -x, -y+2, -z+1.

Fig. 1